Learner(data=ImageDataBunch;
Train: LabelList (50000 items)
x: ImageList
Image (3, 64, 64),Image (3, 64, 64),Image (3, 64, 64),Image (3, 64, 64),Image (3, 64, 64)
y: CategoryList
table,table,table,table,table
Path: /tmp/.fastai/data/cifar100;
Valid: LabelList (10000 items)
x: ImageList
Image (3, 64, 64),Image (3, 64, 64),Image (3, 64, 64),Image (3, 64, 64),Image (3, 64, 64)
y: CategoryList
table,table,table,table,table
Path: /tmp/.fastai/data/cifar100;
Test: None, model=Sequential(
(0): Sequential(
(0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(4): Sequential(
(0): Bottleneck(
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(5): Sequential(
(0): Bottleneck(
(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(6): Sequential(
(0): Bottleneck(
(conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(4): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(5): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(6): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(7): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(8): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(9): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(10): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(11): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(12): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(13): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(14): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(15): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(16): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(17): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(18): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(19): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(20): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(21): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(22): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(7): Sequential(
(0): Bottleneck(
(conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
)
(1): Sequential(
(0): AdaptiveConcatPool2d(
(ap): AdaptiveAvgPool2d(output_size=1)
(mp): AdaptiveMaxPool2d(output_size=1)
)
(1): Flatten()
(2): BatchNorm1d(4096, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(3): Dropout(p=0.25, inplace=False)
(4): Linear(in_features=4096, out_features=512, bias=True)
(5): ReLU(inplace=True)
(6): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(7): Dropout(p=0.5, inplace=False)
(8): Linear(in_features=512, out_features=100, bias=True)
)
), opt_func=functools.partial(<class 'torch.optim.adam.Adam'>, betas=(0.9, 0.99)), loss_func=FlattenedLoss of CrossEntropyLoss(), metrics=[<function accuracy at 0x7fe3516a26a8>], true_wd=True, bn_wd=True, wd=0.01, train_bn=True, path=PosixPath('/tmp/.fastai/data/cifar100'), model_dir='models', callback_fns=[functools.partial(<class 'fastai.basic_train.Recorder'>, add_time=True, silent=False)], callbacks=[MixedPrecision
learn: Learner(data=ImageDataBunch;
Train: LabelList (50000 items)
x: ImageList
Image (3, 64, 64),Image (3, 64, 64),Image (3, 64, 64),Image (3, 64, 64),Image (3, 64, 64)
y: CategoryList
table,table,table,table,table
Path: /tmp/.fastai/data/cifar100;
Valid: LabelList (10000 items)
x: ImageList
Image (3, 64, 64),Image (3, 64, 64),Image (3, 64, 64),Image (3, 64, 64),Image (3, 64, 64)
y: CategoryList
table,table,table,table,table
Path: /tmp/.fastai/data/cifar100;
Test: None, model=Sequential(
(0): Sequential(
(0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(4): Sequential(
(0): Bottleneck(
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(5): Sequential(
(0): Bottleneck(
(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(6): Sequential(
(0): Bottleneck(
(conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(4): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(5): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(6): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(7): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(8): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(9): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(10): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(11): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(12): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(13): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(14): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(15): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(16): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(17): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(18): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(19): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(20): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(21): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(22): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(7): Sequential(
(0): Bottleneck(
(conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
)
(1): Sequential(
(0): AdaptiveConcatPool2d(
(ap): AdaptiveAvgPool2d(output_size=1)
(mp): AdaptiveMaxPool2d(output_size=1)
)
(1): Flatten()
(2): BatchNorm1d(4096, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(3): Dropout(p=0.25, inplace=False)
(4): Linear(in_features=4096, out_features=512, bias=True)
(5): ReLU(inplace=True)
(6): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(7): Dropout(p=0.5, inplace=False)
(8): Linear(in_features=512, out_features=100, bias=True)
)
), opt_func=functools.partial(<class 'torch.optim.adam.Adam'>, betas=(0.9, 0.99)), loss_func=FlattenedLoss of CrossEntropyLoss(), metrics=[<function accuracy at 0x7fe3516a26a8>], true_wd=True, bn_wd=True, wd=0.01, train_bn=True, path=PosixPath('/tmp/.fastai/data/cifar100'), model_dir='models', callback_fns=[functools.partial(<class 'fastai.basic_train.Recorder'>, add_time=True, silent=False)], callbacks=[...], layer_groups=[Sequential(
(0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(4): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(5): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(8): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(9): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(10): ReLU(inplace=True)
(11): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(12): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(13): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(14): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(15): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(16): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(17): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(18): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(19): ReLU(inplace=True)
(20): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(21): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(22): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(23): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(24): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(25): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(26): ReLU(inplace=True)
(27): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(28): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(29): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(30): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(31): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(32): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(33): ReLU(inplace=True)
(34): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(35): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(36): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(37): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(38): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(39): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(40): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(41): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(42): ReLU(inplace=True)
(43): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(44): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(45): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(46): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(47): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(48): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(49): ReLU(inplace=True)
(50): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(51): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(52): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(53): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(54): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(55): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(56): ReLU(inplace=True)
), Sequential(
(0): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(5): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU(inplace=True)
(7): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
(8): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(9): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(10): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(11): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(12): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(13): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(14): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(15): ReLU(inplace=True)
(16): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(17): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(18): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(19): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(20): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(21): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(22): ReLU(inplace=True)
(23): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(24): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(25): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(26): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(27): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(28): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(29): ReLU(inplace=True)
(30): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(31): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(32): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(33): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(34): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(35): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(36): ReLU(inplace=True)
(37): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(38): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(39): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(40): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(41): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(42): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(43): ReLU(inplace=True)
(44): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(45): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(46): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(47): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(48): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(49): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(50): ReLU(inplace=True)
(51): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(52): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(53): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(54): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(55): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(56): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(57): ReLU(inplace=True)
(58): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(59): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(60): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(61): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(62): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(63): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(64): ReLU(inplace=True)
(65): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(66): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(67): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(68): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(69): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(70): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(71): ReLU(inplace=True)
(72): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(73): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(74): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(75): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(76): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(77): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(78): ReLU(inplace=True)
(79): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(80): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(81): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(82): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(83): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(84): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(85): ReLU(inplace=True)
(86): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(87): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(88): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(89): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(90): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(91): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(92): ReLU(inplace=True)
(93): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(94): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(95): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(96): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(97): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(98): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(99): ReLU(inplace=True)
(100): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(101): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(102): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(103): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(104): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(105): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(106): ReLU(inplace=True)
(107): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(108): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(109): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(110): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(111): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(112): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(113): ReLU(inplace=True)
(114): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(115): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(116): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(117): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(118): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(119): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(120): ReLU(inplace=True)
(121): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(122): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(123): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(124): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(125): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(126): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(127): ReLU(inplace=True)
(128): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(129): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(130): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(131): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(132): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(133): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(134): ReLU(inplace=True)
(135): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(136): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(137): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(138): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(139): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(140): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(141): ReLU(inplace=True)
(142): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(143): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(144): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(145): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(146): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(147): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(148): ReLU(inplace=True)
(149): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(150): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(151): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(152): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(153): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(154): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(155): ReLU(inplace=True)
(156): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(157): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(158): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(159): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(160): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(161): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(162): ReLU(inplace=True)
(163): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(164): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(165): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(166): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(167): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(168): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(169): ReLU(inplace=True)
(170): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
(171): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(172): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(173): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(174): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(175): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(176): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(177): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(178): ReLU(inplace=True)
(179): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(180): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(181): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(182): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(183): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(184): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(185): ReLU(inplace=True)
), Sequential(
(0): AdaptiveAvgPool2d(output_size=1)
(1): AdaptiveMaxPool2d(output_size=1)
(2): Flatten()
(3): BatchNorm1d(4096, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): Dropout(p=0.25, inplace=False)
(5): Linear(in_features=4096, out_features=512, bias=True)
(6): ReLU(inplace=True)
(7): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(8): Dropout(p=0.5, inplace=False)
(9): Linear(in_features=512, out_features=100, bias=True)
)], add_time=True, silent=False, cb_fns_registered=True)
loss_scale: 65536
max_noskip: 1000
dynamic: True
clip: None
flat_master: False
max_scale: 16777216], layer_groups=[Sequential(
(0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(4): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(5): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(8): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(9): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(10): ReLU(inplace=True)
(11): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(12): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(13): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(14): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(15): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(16): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(17): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(18): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(19): ReLU(inplace=True)
(20): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(21): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(22): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(23): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(24): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(25): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(26): ReLU(inplace=True)
(27): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(28): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(29): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(30): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(31): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(32): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(33): ReLU(inplace=True)
(34): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(35): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(36): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(37): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(38): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(39): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(40): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(41): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(42): ReLU(inplace=True)
(43): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(44): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(45): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(46): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(47): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(48): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(49): ReLU(inplace=True)
(50): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(51): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(52): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(53): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(54): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(55): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(56): ReLU(inplace=True)
), Sequential(
(0): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(5): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU(inplace=True)
(7): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
(8): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(9): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(10): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(11): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(12): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(13): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(14): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(15): ReLU(inplace=True)
(16): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(17): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(18): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(19): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(20): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(21): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(22): ReLU(inplace=True)
(23): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(24): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(25): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(26): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(27): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(28): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(29): ReLU(inplace=True)
(30): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(31): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(32): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(33): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(34): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(35): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(36): ReLU(inplace=True)
(37): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(38): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(39): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(40): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(41): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(42): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(43): ReLU(inplace=True)
(44): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(45): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(46): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(47): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(48): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(49): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(50): ReLU(inplace=True)
(51): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(52): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(53): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(54): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(55): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(56): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(57): ReLU(inplace=True)
(58): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(59): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(60): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(61): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(62): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(63): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(64): ReLU(inplace=True)
(65): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(66): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(67): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(68): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(69): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(70): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(71): ReLU(inplace=True)
(72): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(73): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(74): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(75): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(76): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(77): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(78): ReLU(inplace=True)
(79): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(80): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(81): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(82): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(83): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(84): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(85): ReLU(inplace=True)
(86): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(87): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(88): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(89): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(90): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(91): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(92): ReLU(inplace=True)
(93): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(94): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(95): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(96): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(97): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(98): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(99): ReLU(inplace=True)
(100): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(101): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(102): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(103): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(104): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(105): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(106): ReLU(inplace=True)
(107): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(108): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(109): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(110): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(111): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(112): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(113): ReLU(inplace=True)
(114): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(115): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(116): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(117): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(118): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(119): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(120): ReLU(inplace=True)
(121): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(122): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(123): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(124): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(125): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(126): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(127): ReLU(inplace=True)
(128): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(129): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(130): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(131): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(132): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(133): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(134): ReLU(inplace=True)
(135): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(136): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(137): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(138): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(139): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(140): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(141): ReLU(inplace=True)
(142): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(143): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(144): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(145): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(146): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(147): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(148): ReLU(inplace=True)
(149): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(150): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(151): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(152): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(153): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(154): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(155): ReLU(inplace=True)
(156): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(157): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(158): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(159): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(160): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(161): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(162): ReLU(inplace=True)
(163): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(164): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(165): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(166): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(167): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(168): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(169): ReLU(inplace=True)
(170): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
(171): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(172): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(173): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(174): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(175): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(176): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(177): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(178): ReLU(inplace=True)
(179): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(180): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(181): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(182): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(183): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(184): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(185): ReLU(inplace=True)
), Sequential(
(0): AdaptiveAvgPool2d(output_size=1)
(1): AdaptiveMaxPool2d(output_size=1)
(2): Flatten()
(3): BatchNorm1d(4096, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): Dropout(p=0.25, inplace=False)
(5): Linear(in_features=4096, out_features=512, bias=True)
(6): ReLU(inplace=True)
(7): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(8): Dropout(p=0.5, inplace=False)
(9): Linear(in_features=512, out_features=100, bias=True)
)], add_time=True, silent=False, cb_fns_registered=True)