
Reinforcement Learning
Workshop 1: An introduction and tabular methods

Netbrain.ml

Logistics

Based on
“Reinforcement Learning: An Introduction” by Sutton and Barto (Introduction +Tabular
Solution Methods)
Introduction to Reinforcement Learning Lecture series by David Silver (1-5)

Workshop 1: An introduction and tabular methods
In the next two weeks …

Workshop 2: Approximation methods
(Introduction to Approximation Methods)

Workshop 3: Approximation methods
(A Deeper Look into Approximation Methods)

Slides and notebooks: https://netbrainml.github.io/workshop/

https://netbrainml.github.io/workshop/

Introduction to
Reinforcement Learning

What is Reinforcement Learning?
Learning how to optimally interact with a given environment.
1. An agent interacts with the environment by performing actions.
2. The environment returns a reward signal, and the next observation upon

agent’s action.
3. The agent must learn how to behave in an environment to maximize

cumulative reward.

Markov Decision Process
Formalize RL with MDP

All states have Markovian property
P(st+1|st) = P(st+1|st , st-1,st-2...s0)

We define MDPs as…

S: set of states R: reward function
A: set of actions 𝛾: discount factor
P: transition probability function

MDPs in Practice

Notice that MDPs work with states (which have Markovian property)

In practice, environments do not provide states to the agent, they give
observations (which cannot be assumed to be Markovian, nor complete)

Thus, we can use the formalisms of partially observable MDP (POMDP).

The agent must create the state representation! In other words, the agent must
have some mapping f, such that f(observation) = state.

This mapping can be complete history, RNNs, beliefs…

Elements of RL
RL contains two components:

1. Environment
a. Model (Known or unknown)

2. Agent (model + one or more subcomponents)
a. Model (Model-based)
b. Policy (Policy-based or Actor-Critic)
c. Value Function (Value-based or Actor Critic)

Model
The model is the behavior of the environment upon interactions.
Composed of two components:

Dynamics is the probability of going to state s’ and receiving reward r, given
the agent is in state s and takes the action a.

Reward function is a mapping from the state, action to a scalar value.

If the agent has a model of the environment, then the agent is considered
model-based. Otherwise, it is model-free approach.

Policy
The policy is a function used to map state to action.

It does not need to be deterministic, instead we can have a stochastic policy.

Consider an environment as such:

Additionally, we can consider another trade-off:
Exploration vs exploitation:

Choose to explore and learn more about the environment
Exploit what is already known to be optimal

Local Action (0)

Win (+1)

Lose (-1)

Global Action (0)

Value Function
The value function tells us how good a state and/or action is.

Return is the expected (discounted by 0 < 𝛾 < 1) cumulative rewards at a
given a trajectory. (St, At, Rt+1, St+1, At+1, Rt+2...St+k, At+k, Rt+k+1, St+k+1…)

We can define two value functions (V, Q) where the input can be either state or
state-action pair.

Gridworld and state-value function V(s)

Notice that we can recursively define return

Thus, we can recursively define our value functions (Bellman Equations)

Bellman Equations

Backup Diagrams

We obtain the Bellman Expectation Equations

Optimality
Optimal equations defines the value functions and policy to maximize the
expected cumulative return. Thus, 𝝅’ ≥ 𝝅 iff V𝝅’ (s) ≥ V𝝅(s) for all s in S.

Optimal policy functions:

Bellman Optimality Equations for Value:

Backup Diagrams for Optimal Value Functions

Objectives in RL

Learning: Agent learns a policy by interacting with an unknown model
Planning: Agent learns a policy with an known model

Prediction: Evaluate how good a policy is
If we follow a fixed policy, how much reward will we get?
ie) We can obtain a value function from prediction.

Control: Optimizes for policy for maximize return
What is the best policy given a value function?

Notebook (Introduction)

Tabular Methods Introduction

Basic Framework for Tabular Methods
Build up optimal policy/value function that maximizes cumulative expected
return by storing past behaviors into arrays or tables.

Each entry would contain the current approximation for its respective
state/value.

We will cover some algorithms utilizing:
Dynamic Programming
Monte Carlo Methods
Temporal-Difference Learning
n-step Methods

n-
step

Tabular Methods with
Dynamic Programming

Dynamic Programming

DP is used in RL as a model-based approach for planning.

In general, DP refers to devising overlapping subproblems, and using the optimal
solutions to the subproblems build up to the overall solution.

Recall the recursive nature of the Bellman equation and stored value function

Subproblem 1: Prediction (Evaluate the current policy and obtain a value function)
Subproblem 2: Control (Improve upon the policy using the value function)

We will discuss two methods: Policy Iteration and Value Iteration.

Policy Iteration
Iterate policy evaluation and policy improvement until improvement stops.

Policy evaluation computes the value function for the given policy
Uses Bellman Expectation Equation for Value

Policy improvement uses the optimal policy equation to obtain the policy
Greedily acts on value function to form a better policy

Policy evaluation

Policy Improvement

Policy Evaluation

We can take an iterative approach using the expected update.

We show that vk ➝ v* as k ➝ ∞, where each k is an iteration/sweep across all
states.

How do we know when we obtained the value function for the given policy?
Enforce ε-convergence for stopping condition is [Σs|V’(s) - V(s)| < ε]
Iterate k times over all states to obtain V(s)

Visualization of Iterative Policy Evaluation

Policy Improvement

We can act greedily upon the value function to obtain our updated policy.
How is the updated policy more optimal than the past policy?

We have to show the following equation are true for all states.

So we know that,

Value Iteration
Find optimal value function first using an update rule that combines policy
improvement and truncated policy evaluation (updates V(s) after one sweep).

Update value function using Bellman Optimality Equation
Then obtain the policy by acting greedily on the optimal value function.

Notebook
(Dynamic Programming)

Tabular Methods with
Monte Carlo Methods

Monte Carlo Methods

MC methods are model-free approaches that learn off of complete episodes,
calculating and using the expected return to obtain the value and policy.

Note: Works only for episodic MDPs = Has a terminal state

Prediction/Policy Evaluation: Obtain the value function through trial and error
Control: Obtain the policy from the value function

k=T

Policy Evaluation with MCM

Run an episode with some policy, and then calculate the return G at each time step
At each timestep t, say we are at state s
Append Gt to Returns[s]

V(s) = average(Returns[s])

Two options to estimating value:
First-Visit MC: Include return of only the first visit of the state in each episode
Every-Visit MC: Include returns of all visits of the state in each episode

How do we make sure we update every state? (Exploration)
Exploring starts: Have nonzero prob. of starting at any state
ε-greedy/ε-soft policies: Have nonzero prob. of selecting a random action.
Have two ε-soft policies (One for exploration, one for exploitation)

ε-soft vs ε-greedy

ε-soft: Allow each action in every state have some minimal chance (>0) of being
selected

ε-greedy is a form of ε-soft:
Have some probability (=ε/|A| where A is the set of all actions) of choosing
any action, and have a probability (=1-ε+ε/|A|) of choosing the greedy action.

GLIE : Greedy in the Limit with Infinite Exploration

Given an ε-greedy policy,
We assume all state-action pairs are explored infinite times, and make the
policy converge to a greedy policy

To implement this, ε can decay over time.
For example, we set ε = 1/k, where k is the number of episode already
updated the value

[0] Sajedian, Iman & Lee, Heon & Rho, Junsuk. (2019). Double-deep Q-learning to increase the efficiency of metasurface holograms. Scientific Reports. 9. 10899. 10.1038/s41598-019-47154-z.

Off-policy Approach
“Learning about one way of behaving, called the target policy, from data generated
by another way of selecting actions, called the behavior policy” (Maei)

Have a policy for exploration and a policy for exploitation
Use a policy to create samples (called the behavioral policy = B)
Obtain another policy (called the target policy = π) using the samples

Given that the samples are sampled from B,
We want the obtain the expectation of these samples (value) wrt π.

Notice we cannot simply take the average of the samples to obtain the value.
Instead, we must use importance sampling.

[0] Maei, H. R., Szepesv´ari, C., Bhatnagar, S., & Sutton, R. S. (2010) Toward off-policy learning control with function approximation. ICML, pages 719–726

Importance Sampling

We want to find the expectation (value) of the samples X wrt target π

From this derivation, we simply need to find the weighted average over all the
samples by the importance sampling ratio ρ

Incremental Updates

Iteratively calculating the mean/value function.

For nonstationary problems, we should replace 1/k with a fixed constant 𝝰

Notebook
(Monte Carlo Methods)

Tabular Methods with
Temporal-Difference Learning

Temporal-Difference (TD) Learning

TD methods are model-free approaches that learns by bootstrapping.
Can update estimation of value function within the next time step

TD methods can work off of incomplete trajectories, which is especially useful for
continuing or long episodic tasks.

Does TD converge?

TD(0): Use the equation above to update the value function
TD target in red
TD error in green

Visualization of TD vs MC

TD MC

Visualization of TD vs DP

TD DP

SARSA
On-policy TD control algorithm that updates the state-action value using TD(0)

Converges proven if GLIE conditions are met

Expected SARSA
Take the expectation over all actions for the TD target.

SARSA:

Expected SARSA:

Why use Expected SARSA?

Is Expected SARSA on-policy or off-policy?

Q-Learning
Off-policy TD control that uses an approximate optimal state-action value as TD
target:

Double Learning
For Q-learning, there is maximization bias, where the value function is
overestimated given some noise/variance in environment or inability to generalize.

Double Q-Learning: Have two independent value function and update one of them
on each sample with (prob = 0.5). This will make it less likely that both value
functions are overestimating the same action.

Notebook
(Temporal Difference Learning)

Tabular Methods with
N-step Bootstrapping

n-step Bootstrapping
Instead of updating after every timestep (TD-Learning) or an entire episode
(MCM)

Obtain the n-step return:

Update the value function using the n-step return:

The above procedure is called TD(n)

Backup diagrams for n-step Bootstrapping

n-step SARSA
Recall SARSA updates:

So, we take n-steps and estimate the return

We let the estimated return be the “TD target”

For Expected SARSA, n-step bootstrapping would follow similarly to this
procedure

Notebook
(n-Step Bootstrapping)

