Reinforcement Learning

Workshop 2: Approximation Methods (Part 1)

Logistics

Based on

"Reinforcement Learning: An Introduction" by Sutton and Barto (Approximation Solution Methods)

Introduction to Reinforcement Learning Lecture series by David Silver (6-7)

Last time: Workshop 1: An introduction and tabular methods

Workshop 2: Approximation methods (Part 1)

Introduction to Approximation Methods

Next week: Workshop 3: Approximation methods (Part 2)

A Deeper Look into Approximation Methods

Slides and notebooks: https://netbrainml.github.io/workshop/

Motivation for Approximation Methods

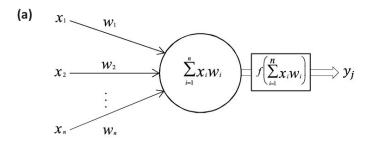
What is the issue with tabular methods?

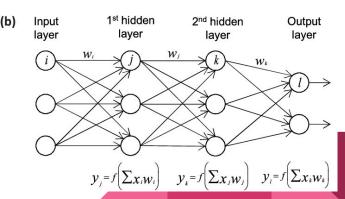
For large scale RL tasks:

- Memory issue
- Need to explore and learn on all states for informed decision-making
 - LUT is unable to generalize.

Function approximation:

- Instead of a table, use some function as the value function and/or policy.
- For example, we can use a ML/DL model as the function approximator.
- In this workshop, we will focus more on using neural networks as our function approximator.





Overview

Approximate the value function:

Value Approximation Methods

For this workshop series, we will focus on DQN methods with gradient-based optimization

Approximate the policy:

Policy Approximation Methods

- For this workshop series, we will focus on policy gradient methods
- We will only introduce one DFO method today but more next time

Approximate the policy and value function:

Actor Critic Approximation Methods

Approximate the model:

Model-based Approximation methods

Approximation Methods with Value Approximation

Value Approximation Method

Recall

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s\right], \text{ for all } s \in \mathcal{S},$$

$$q_{\pi}(s,a) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s, A_t = a\right].$$

Let $\hat{v}(s, \mathbf{w})$ be the value function approximation parametrized by w, and let $v_{\pi}(s)$ be the target value function.

We define a loss function: $\overline{\mathrm{VE}}(\mathbf{w}) \doteq \sum_{s \in \mathbb{S}} \mu(s) \left[v_{\pi}(s) - \hat{v}(s, \mathbf{w}) \right]^2$ where u(s) is some weighting.

We can use gradient-based optimization to adjust the weights

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t - \frac{1}{2} \alpha \nabla \left[v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \right]^2$$
$$= \mathbf{w}_t + \alpha \left[v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \right] \nabla \hat{v}(S_t, \mathbf{w}_t)$$

MC and TD-Learning Approach

$$\overline{\text{VE}}(\mathbf{w}) \doteq \sum_{s \in \mathcal{S}} \mu(s) \Big[v_{\pi}(s) - \hat{v}(s, \mathbf{w}) \Big]^2.$$

If we use MC approach, we let $v_{\pi}(s)$ be the return If we use TD-Learning or n-step bootstrapping, we let $v_{\pi}(s)$ be the TD target/n-step return.

Then we can update the weight vector using SGD:

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t - \frac{1}{2} \alpha \nabla \left[v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \right]^2$$
$$= \mathbf{w}_t + \alpha \left[v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \right] \nabla \hat{v}(S_t, \mathbf{w}_t)$$

For bootstrapping methods, we call the update semi-gradient. [0]

The following approaches are called Gradient MC and Semi-Gradient SARSA

Experience Replay

Store past interactions with environment in a replay buffer

- "Each step of experience is potentially used in many weight updates, which allows for greater data efficiency." [0]
- "Learning directly from consecutive samples is inefficient, due to the strong correlations between the samples; randomizing the samples breaks these correlations and therefore reduces the variance of the updates." [0]
- "When learning on-policy the current parameters determine the next data sample that the parameters are trained on." [0]
- "By using experience replay the behavior distribution is averaged over many of its previous states, smoothing out learning and avoiding oscillations or divergence in the parameters" [0]

Deep-Q Networks

```
Algorithm 1 Deep Q-learning with Experience Replay
   Initialize replay memory \mathcal{D} to capacity N
   Initialize action-value function Q with random weights
   for episode = 1, M do
       Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
       for t = 1, T do
            With probability \epsilon select a random action a_t
            otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
            Execute action a_t in emulator and observe reward r_t and image x_{t+1}
            Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
            Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
            Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D}
           Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
            Perform a gradient descent step on (y_i - Q(\phi_i, a_i; \theta))^2 according to equation 3
       end for
   end for
```

Approximation Methods with Policy Approximation

Policy Approximation Method

Recall a policy is a function used to map state to action.

$$\pi(s) = a \qquad \qquad \pi(a|s) = \mathbb{P}_{\pi}[A = a|S = s]$$

If we parameterized the policy, we have $\pi_{\theta}(a|s) = P[a|s]$

How can we update the policy so that we converge to an optimal policy?

Objective: Increase the likelihood of selecting actions with the highest expected return Methods of updating policy:

Policy Gradient

DFO (Derivative Free Optimization)

Cross Entropy Optimization (CE)

Policy Gradients

Find the gradient of the reward function wrt parameters of the policy, and perform gradient ascent.

$$\nabla_{\theta} J(\pi_{\theta}) = \nabla_{\theta} \mathop{\to}_{\tau \sim \pi_{\theta}}^{E} [R(\tau)]$$

$$= \nabla_{\theta} \int_{\tau} P(\tau | \theta) R(\tau)$$

$$= \int_{\tau} \nabla_{\theta} P(\tau | \theta) R(\tau)$$

$$= \int_{\tau} P(\tau | \theta) \nabla_{\theta} \log P(\tau | \theta) R(\tau)$$

$$= \mathop{\to}_{\tau \sim \pi_{\theta}}^{E} [\nabla_{\theta} \log P(\tau | \theta) R(\tau)]$$

$$\therefore \nabla_{\theta} J(\pi_{\theta}) = \mathop{\to}_{\tau \sim \pi_{\theta}}^{E} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t} | s_{t}) R(\tau) \right]$$

REINFORCE

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

```
Input: a differentiable policy parameterization \pi(a|s,\theta)

Initialize policy parameter \theta \in \mathbb{R}^{d'}

Repeat forever:

Generate an episode S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}, R_T, following \pi(\cdot|\cdot, \theta)

For each step of the episode t = 0, \dots, T-1:

G \leftarrow \text{return from step } t

\theta \leftarrow \theta + \alpha \gamma^t G \nabla_{\theta} \ln \pi(A_t|S_t, \theta)
```

Cross Entropy Optimization

Return the final μ .

```
Initialize \mu \in \mathbb{R}^d, \sigma \in \mathbb{R}^d
for iteration = 1, 2, \dots do
    Collect n samples of \theta_i \sim N(\mu, \text{diag}(\sigma))
    Perform a noisy evaluation R_i \sim \theta_i
    Select the top p\% of samples (e.g. p = 20), which we'll
          call the elite set
    Fit a Gaussian distribution, with diagonal covariance,
          to the elite set, obtaining a new \mu, \sigma.
end for
```

Approximation Methods with Actor Critic Methods

Actor Critic

Approximate both the policy and the value function.

Reducing variance of reward signal by using a value function approximation. If we use gradient updates for the policy approximation (actor):

$$abla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) G_{t} \right]$$

$$= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) Q^{w}(s, a) \right]$$

For the value function approximation (critic), we can follow the same procedure as before.

$$\overline{\text{VE}}(\mathbf{w}) \doteq \sum_{s \in \mathcal{S}} \mu(s) \left[v_{\pi}(s) - \hat{v}(s, \mathbf{w}) \right]^2.$$

Advantage Function

Advantages is another measure that can be considered as another version of Q-value with lower variance by taking the state-value off as the **baseline**.

$$A(s_t, a_t) = Q_w(s_t, a_t) - V_v(s_t)$$

$$Q(s_t, a_t) = \mathbb{E}[r_{t+1} + \gamma V(s_{t+1})]$$

$$A(s_t, a_t) = r_{t+1} + \gamma V_v(s_{t+1}) - V_v(s_t)$$

Advantage Actor Critic

Use the advantage function instead of the value function approximation to calculate the gradient.

$$A(s_t, a_t) = r_{t+1} + \gamma V_v(s_{t+1}) - V_v(s_t)$$

$$\nabla_{\theta} J(\theta) \sim \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) (r_{t+1} + \gamma V_v(s_{t+1}) - V_v(s_t))$$
$$= \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) A(s_t, a_t)$$

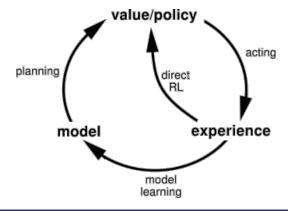
Approximation Methods with Model-based Methods

Model Approximation with DYNA

DYNA: Model-based approach to integrate learning and planning Why might this approach be beneficial? Approximate and learn the model

$$P(s', r|s, a) = \mathbb{P}[S_{t+1} = s', R_{t+1} = r|S_t = s, A_t = a]$$

Optimize the policy/value function by planning with the model approximation.



DYNA-Q

```
Tabular Dyna-Q
Initialize Q(s, a) and Model(s, a) for all s \in S and a \in A(s)
Loop forever:
   (a) S \leftarrow \text{current (nonterminal) state}
   (b) A \leftarrow \varepsilon-greedy(S, Q)
                                                                                          Q-learning
   (c) Take action A; observe resultant reward, R, and state, S'
   (d) Q(S, A) \leftarrow Q(S, A) + \alpha \left[ R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]
   (e) Model(S, A) \leftarrow R, S' (assuming deterministic environment) \leftarrow Model Update
   (f) Loop repeat n times:
          S \leftarrow \text{random previously observed state}
          A \leftarrow \text{random action previously taken in } S
                                                                                        Planning Step
          R, S' \leftarrow Model(S, A)
         Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]
```