4
N

Reinforcement Learning

Workshop 2: Approximation Methods (Part 1)

Netbrain.ml

Logistics

Based on
“Reinforcement Learning: An Introduction” by Sutton and Barto (Approximation Solution

Methods)
Introduction to Reinforcement Learning Lecture series by David Silver (6-7)

Last time: Workshop 1: An introduction and tabular methods
Workshop 2: Approximation methods (Part 1)
Introduction to Approximation Methods
Next week: Workshop 3: Approximation methods (Part 2)
A Deeper Look into Approximation Methods
Slides and notebooks: https://netbrainml.github.io/workshop/

https://netbrainml.github.io/workshop/

Motivation for Approximation Methods

What is the issue with tabular methods?
For large scale RL tasks:

(a) X1

e Memory issue ;
e Need to explore and learn on all states for * f[ax'w"] —
informed decision-making
e LUT is unable to generalize. .
(b) Input 1st hidden 2nd hidden Output
layer layer layer layer

Function approximation:
e Instead of a table, use some function as the value
function and/or policy.
e For example, we can use a ML/DL model as the
function approximator.
e In this workshop, we will focus more on using yj=f(x,.w,.] ygf[Zx,w,] y,=f[kak]
neural networks as our function approximator.

Overview

Approximate the value function:
Value Approximation Methods
e For this workshop series, we will focus on DQN methods with gradient-based
optimization
Approximate the policy:
Policy Approximation Methods
e For this workshop series, we will focus on policy gradient methods
e We will only introduce one DFO method today but more next time
Approximate the policy and value function:
Actor Critic Approximation Methods
Approximate the model:
Model-based Approximation methods

Approximation Methods with
Value Approximation

Value Approximation Method

o0
E :.k
Y Ry gkt
k=0
o0
k
Z“y Re k41

k=0

Recall _ o = =
U"(S) = IEW[(J'I I ‘Sl:SI = IE”

S, :.q] , for all s € §,

gr(8,a) = Eq|Gt | St=s,Ar=a] = E,

Si=s., A; :a‘ .

Let o(s.w) be the value function approximation parametrized by w, and let v, (s)
be the target value function.
We define a loss function: g, - Sl s~ ﬁ(&w)]z. where u(s) is some weighting.

We can use gradient-based optimization to adjust the weights

. 1 . .
Wiyl = Wi — §aV ['“w(st) — (St swt)]

= W; + «x [’l?ﬂ-(Sp) — 'lf’(Sf ,W()] V'lf'(Sf,Wt)

MC and TD-Learning Approach
VE(w) = Zu(s) ['v,r(s) - 'ﬁ(s,w)]z.

SES

If we use MC approach, we let vx(s) be the return
If we use TD-Learning or n-step bootstrapping, we let vz(s) be the TD
target/n-step return.
Then we can update the weight vector using SGD:
Werl = Wy — %av [u,,(s,) . -f»(s,,w,)]2

— w4 a [‘U,,(S,) — 9(S, ,w,)] Vo(S,,we)

For bootstrapping methods, we call the update semi-gradient. [0]

The following approaches are called Gradient MC and Semi-Gradient SARSA

[0] Baird, L. C., Klopf, A. H. (1993). Reinforcement learning with high-dimensional, continuous actions. Wright Laboratory, Wright-Patterson Air Force Base, Tech. Rep. WL-TR-93-1147.

Experience Replay

Store past interactions with environment in a replay buffer

e “Each step of experience is potentially used in many weight updates, which allows
for greater data efficiency.” [0]

e ‘“Learning directly from consecutive samples is inefficient, due to the strong
correlations between the samples; randomizing the samples breaks these
correlations and therefore reduces the variance of the updates.” [0]

e “When learning on-policy the current parameters determine the next data sample
that the parameters are trained on.” [0]

e "By using experience replay the behavior distribution is averaged over many of its
previous states, smoothing out learning and avoiding oscillations or divergence in
the parameters” [0]

[0] Mnih, Volodymyr & Kavukcuoglu, Koray & Silver, David & Graves, Alex & Antonoglou, loannis & Wierstra, Daan & Riedmiller, Martin. (2013). Playing Atari with Deep Reinforcement Learning.

Deep-Q Networks

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {x} and preprocessed sequenced ¢; = ¢(s1)
fort=1,T do
With probability € select a random action a;
otherwise select a; = max, Q*(¢(s;), a;0)
Execute action a; in emulator and observe reward r; and image ;41
Set s;41 = ¢, a4, T441 and preprocess ¢y 1 = ¢(S141)
Store transition (¢¢, at, r¢, ¢r41) in D
Sample random minibatch of transitions (¢;, a;,7;, ¢;41) from D

Set y; = { T for terminal ¢; 1

rj +ymaxy Q(¢j41,0a’;6) for non-terminal ¢,

Perform a gradient descent step on (y; — Q(¢;, a;; 6))? according to equation 3
end for
end for

Mnih, Volodymyr & Kavukcuoglu, Koray & Silver, David & Graves, Alex & Antonoglou, loannis & Wierstra, Daan & Riedmiller, Martin. (2013). Playing Atari with Deep Reinforcement Learning.

Approximation Methods with
Policy Approximation

Policy Approximation Method

Recall a policy is a function used to map state to action.
n(s) =a n(als) = P.[A = a|S = 5]
If we parameterized the policy, we have 7T9(CL|S) — P[CL|S]

How can we update the policy so that we converge to an optimal policy?
Objective: Increase the likelihood of selecting actions with the highest expected return
Methods of updating policy:
Policy Gradient
DFO (Derivative Free Optimization)
e Cross Entropy Optimization (CE)

Policy Gradients

Find the gradient of the reward function wrt parameters of the policy, and perform gradient
ascent.

Vod(m) = Vo E [R(7)]
-V, / P(710)R(7)
_ / %,—,P(Tw)R(T)
- / P(r]0)Vylog P(r|0)R(r)

= E [Vylog P(7|0)R(T)]

T~Tg

T
Z Vo log ma(ay|s;) R(T)

=l

S Ved(mg) = E

T~Tg

REINFORCE

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization m(als, 8)
Initialize policy parameter 6 € RY
Repeat forever:
Generate an episode Sy, Ag, Ry, ..., S7—1, Ar_1, Ry, following =(-|-, 8)
For each step of the episode t =0,...,7" — 1:
G « return from step ¢
0 < 0+ ay' GV Inm(A|S:,0)

Cross Entropy Optimization

Initialize 4 € RY, 0 € RY
for iteration = 1,2,... do
Collect n samples of 6; ~ N(u,diag(o))
Perform a noisy evaluation R; ~ 6;
Select the top p% of samples (e.g. p = 20), which we'll
call the elite set
Fit a Gaussian distribution, with diagonal covariance,
to the elite set, obtaining a new u, 0.
end for
Return the final .

Approximation Methods with
Actor Critic Methods

Actor Critic

Approximate both the policy and the value function.
Reducing variance of reward signal by using a value function approximation.
If we use gradient updates for the policy approximation (actor):
VoJ(0) = Er, [Vologme(s,a) G
=E, [Vologm(s,a) Q% (s, a)]

For the value function approximation (critic), we can follow the same procedure as
before.

VE(w) = Z p(s) ['v,,(s) - 'iv(s,w)] 2.

SES

Advantage Function

Advantages is another measure that can be considered as another version of Q-value
with lower variance by taking the state-value off as the baseline.

A(St, at) — Qw(St, at) — Vv(st)
Q(st,ai) = Elrepr + vV (si41)]
A(sgyar) = i1 +YVo(si41) — Vo (se)

Advantage Actor Critic

Use the advantage function instead of the value function approximation to calculate
the gradient.

A(St, at) = Tt41 T ’)’Vv(St+1) — Vv(St)

i

Vg J(0) ~ Vg logma(ar|se)(ri41 +7Vo(si41) — V()

A
|
— O

Ve log mg(a|s)A(sy, ar)

Approximation Methods with
Model-based Methods

Model Approximation with DYNA

DYNA: Model-based approach to integrate learning and planning
Why might this approach be beneficial?
Approximate and learn the model

P(s',rls,a) = P[Syy; =&, Ry =118, = 5,A; = d]

Optimize the policy/value function by planning with the model approximation.

value/policy

acting
planning direct
RL

model experlence

model
learning

DYNA-Q

Tabular Dyna-Q

Initialize Q(s,a) and Model(s,a) for all s € 8§ and a € A(s)
Loop forever:

(a) S < current (nonterminal) state

(b) A « e-greedy(S, Q)

(c) Take action A; observe resultant reward, R, and state, S’

(d) Q(S, A) « Q(S,A) + a[R + ymax, Q(S’,a) — Q(S, A)]

)
(f) Loop repeat n times:
S < random previously observed state
A < random action previously taken in S
R,S" < Model(S, A)
Q(S,4) - Q(S,4) + a[R +ymax, Q(S',a) — Q(S, A)]

- Q-learning

(e) Model(S,A) < R, S’ (assuming deterministic environment) <~ Model Update

- Planning Step

